LISTERIA MONOCYTOGENES Y BIOFILMS: REPERCUSIÓN EN EL SECTOR AGROALIMENTARIO

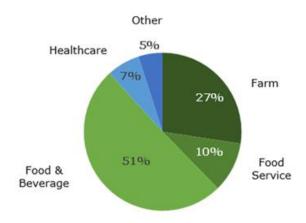
Métodos de detección y erradicación de biofilm en IAA

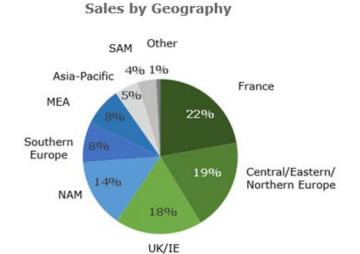
¿QUIEN ES KERSIA?

LÍDER INTERNACIONAL EN SEGURIDAD ALIMENTARIA GRACIAS A NUESTRA EXPERIENCIA EN BIOSEGURIDAD

CON EL OBJETIVO DE GARANTIZAR LA SEGURIDAD ALIMENTARIA PARA EL CONSUMIDOR FINAL EN TODA LA CADENA: "DESDE LA GRANJA HASTA EL PLATO"

Figuras clave

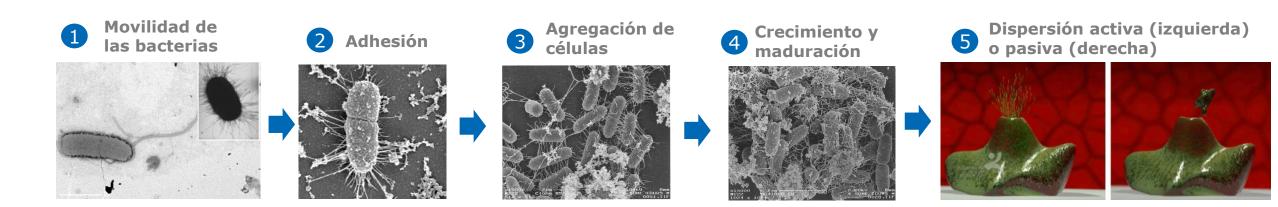




Sales by End - Market

Definición de biofilm

▶ Un **biofilm** es una **comunidad de microorganismos** unidos entre sí y a superficies mediante la secreción de una matriz protectora y adhesiva.


- Bacterias
- Hongos
- Algas
- Levaduras
- Protozoos
- Alérgenos

>90 % de bacterias están en biofilm en nuestro ambiente.

Forma de crecimiento protegida: **FACTOR CLAVE DE SUPERVIVENCIA** contra desinfectantes y cualquier tensión externa como UV, estrés ácido, toxicidad metálica o deshidratación.

Crecimiento del biofilm

- 1 Movilidad de las bacterias: Flujo que depende del ambiente. Movilidad por la presencia de pili y flagelo
- 2 Adhesión:
 - A. Fuerzas electrostáticas: reversible (pocos segundos)
 - **B.** Bacterias crean un vínculo estable con el soporte: irreversible
- 3 Agregación de células: Acumulación de microorganismos en la superficie

- 4 Maduración: Crecimiento de biofilm y desarrollo de sustancias poliméricas extracelulares
- **Dispersión** y contaminación en otro sitio. Puede ser pasiva o activa

Listeria y la capacidad de adaptación

Facultad de preadaptación y adaptación y persistencia:

Adaptación a temperaturas frías

Las **bacterias psicotrofas** pueden adaptarse a la tensión del frío:

- síntesis de enzimas capaz de trabajar a bajas temperaturas
- composición de adaptación de las membranas celulares con **ácidos grasos insaturados**
- la síntesis de proteínas de choque térmico aumenta para mantener la conformación espacial

Formación de células persistentes

Formación de células persistentes en ambientes alimenticios:

- presencia de células persistentes, durmientes, que no se dividen con capacidad para sobrevivir a la tensión ambiental
- cambia la morfología celular de bacilos a cocos
- aumento de la tolerancia a la T°, pH, alta presión, baja AA, bajo oxígeno

Formación de biofilm

- La Listeria puede adherirse a muchos tipos de superficie: acero inoxidable, poliestireno...
- Las cepas son capaces de **producir** biofilm a 37 °C, y también a algunas temperaturas bajas (4 °C, 12 °C y 15 °C)
- Las arquitecturas de los biofilm son diferentes entre las cepas: diferencia de biovolumen y grosor, rugosidad, ...

Métodos para detectar Listeria

MÉDOTOS DIRECTOS

Pruebas específicas para detectar Listeria spp. o directamente L. monocytogenes (en muestras de alimentos o superficies/medioambientales)

- Métodos por medios de cultivos
- Pruebas de biología molecular
- Pruebas inmunoenzimáticas

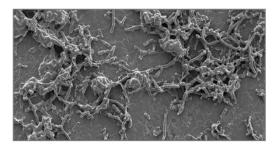
Método utilizado según:

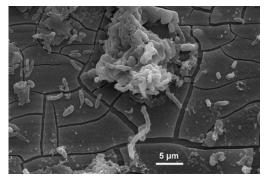
- el nivel de detección: Detección simple después del enriquecimiento o del recuento directo (UFC/ml o g)
- el tiempo de análisis para obtener el resultado (de 1 a varios días)

INDICADORES INDIRECTOS

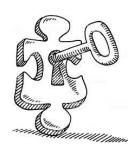
Para detectar fallos en los procedimientos de limpieza y desinfección

- Métodos ATP
- Detección de residuos de proteínas tras limpieza/desinfección
- Frotamiento de las superficies y recuento de indicadores microbianos como la microflora mesófila aerófila u otras familias.
- Pruebas de biofilm



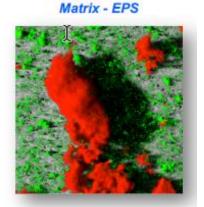

Impactos del biofilm en la industria alimentaria

- Seguridad alimentaria: contaminación durante la producción (irregular e incontrolable).
- ▶ **Resistencia:** a la desinfección mediante la neutralización de biocidas o la modificación del estado fisiológico.
- **Bioincrustación**: causa resistencia al flujo de los fluidos, aumenta la rugosidad de las superficies. La formación de limo reduce el rendimiento térmico en los intercambiadores de calor. Pueden desarrollarse gases y olores.
- **Biocorrosión:** corroe las superficies metálicas. Puede aparecer corrosión por picadura y la liberación de micropartículas y elementos de aleación.


¿La solución?

- Diseño higiénico de la instalación sea lo mas adecuado.
- Utilizar los métodos y utensilios de limpieza correctos.
- Garantizar un protocolo de limpieza con detergentes testados y eficaces en cada aplicación.
- Uso de Uso de biocidas testados frente al germen/gérmenes en cuestión (Listeria, etc...). Registro Biocida y test de eficacia.

Mantener unas medidas y actitudes higiénicas eficaces en todos los elementos que influyen en la producción.



Revisar PLD

- Productos y concentraciones eficaces
- Tiempos óptimos de contacto
- Acción mecánica correcta
- Temperaturas de trabajo adecuada

- ▶ Si el protocolo o el diseño de instalación no es correcto....
 - RIESGO DEAPARICIÓN DE BIOFILM

Fases en el control de listeria

- 1. Prevención: implicación de todos departamentos y personal de la empresa.
- 2. Control: del agua, del aire, del ambiente, de los desagües, de los trabajadores,.....

"Punto clave: contaminaciones cruzadas"

- 3. Detección: ¿Presencia de biofilm?
- 4. Erradicación: Plan de Limpieza y Desinfeccion correcto y a medida.

"Punto clave: elección del químico"

METODOS DE DETECCION DE BIOFILM

Kit de detección para superficies

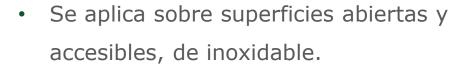
Análisis de detección para aplicación CIP

METODOS DE DETECCION DE BIOFILM

Planificación del diagnóstico

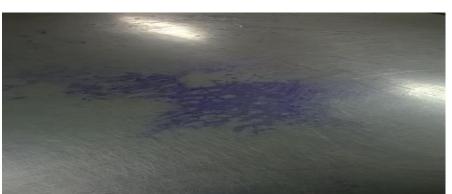
Realización de una diagnóstico que permite poner al descubierto el biofilm

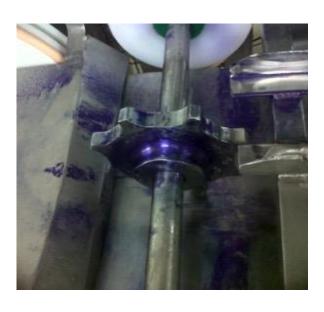
Propuesta de una solución adaptada a cada situación



 Es posible detectar y visualizar una contaminación <u>asociada a un biofilm</u> gracias a un nuevo procedimiento de coloración y decoloración.

- El «Kit de detección de biofilms» se compone de 2 productos:
 - Reactivo de coloración
 - Reactivo de decoloración





Detección de los biofilms en superficies en función de la interpretación del método "coloración/decoloración"

Sin tinción

Tinción: Biofilm

Productos químicos clásicos

Gama Detzym Gama Addzym

Eliminación residuos estándar

Eliminación residuos orgánicos tenaces

Eliminación del Biofilm

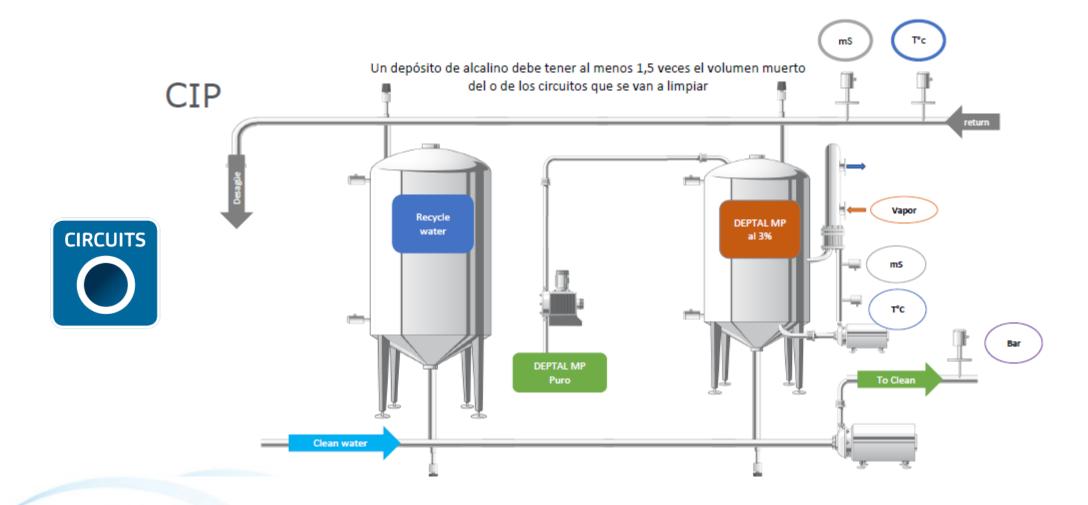
iEficacia total de la limpieza!

CLEAN TEST

Método rápido de validación por detección de agentes contaminantes.

La contaminación no tiene porque estar asociadas a BIOFILM

Basado en una reacción catalasa +


Compatible con gran cantidad de materiales.

1. Identificación de la fuente del biofilm

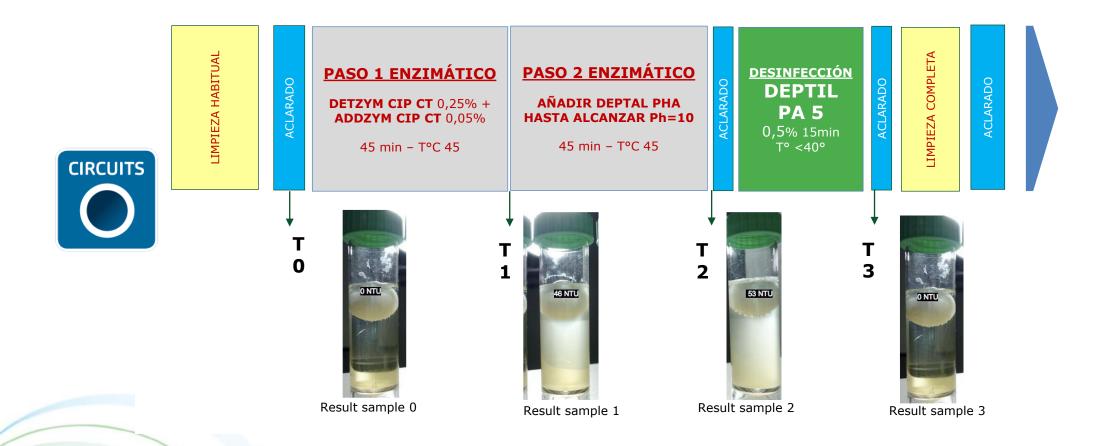
Diagnóstico de la instalación / proceso productivo.

2. Tratamiento curativo:

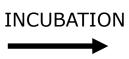
Definición de un protocolo de limpieza enzimática Aplicación del método de identificación del biofilm

- Toma de muestras durante el tratamiento enzimático
- Análisis de las muestras

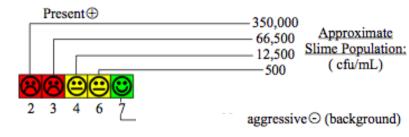
Redacción de un informe


3. Tratamiento preventivo y seguimiento de la instalación

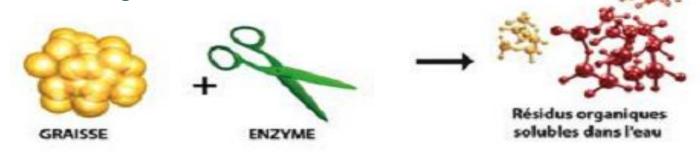
Frecuencia: A determinar por el consejero técnico de KERSIA


PROTOCOLO A SEGUIR: Tratamiento y toma de muestras

Diagnóstico: SLIME BART TEST



TURBIDEZ -> BACTERIAS
PRECIPITADO -> MATERIA ORGÁNICA



ERRADICACIÓN DE UN BIOFILM

La limpieza enzimática

- Las enzimas trabajan sinérgicamente con otros agentes detergentes.
- Transforman de manera irreversible las materias orgánicas en residuos mucho más pequeños y solubles en el agua.

- Proteasa
- Amilasa
- Lipasa Lípidos
- Celulasa

Proteinas

Almidón

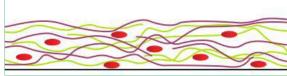
Fibras

Carne, sangre, huevos

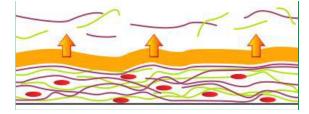
Patatas, azúcar, pastas

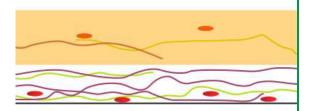
Grasa, aceite

Vegetales, frutas

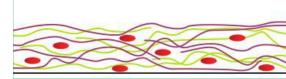


¿CÓMO ACTUAN LAS ENZIMAS EN UN BIOFILM?


Limpieza estándar

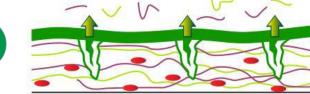

Biofilm antes del tratamiento

Detergencia → Acción superficial



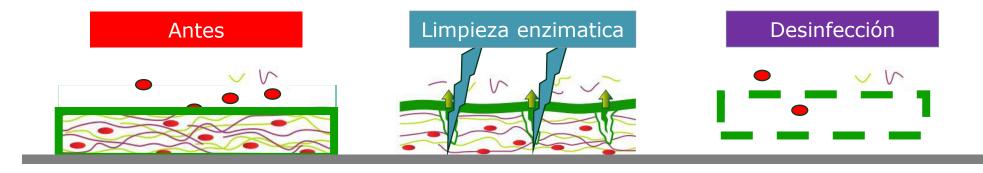
Las bacterias quedan atrapadas en la estructura del biofilm

No eliminación del biofilm Posible higiene incompleta Riesgo de contaminación


Limpieza enzimática

Biofilm antes del tratamiento

Enzimas → corte de la matriz EPS, las bacterias son libres y accesibles


Desinfección → Eliminación de las bacterias

Eliminación del biofilm Higiene óptima

¿CÓMO ACTUAN LAS ENZIMAS EN UN BIOFILM?

El biofilm produce contaminaciones periodicas

Enzimas cortan matriz biofilm y liberan germenes

Eliminado biofilm, se destruyen germenes

SOLUCIONES ENZIMÁTICAS PARA EL BIOFILM

SOLUCIONES ENZIMÁTICAS

Eliminación del biofilm +

Eliminación del biofilm	Detergente enzimático
ADDZYM SURFACES + DETZYM SURFACES	
DETZYM SURFACES PT	
DETZYM SURFACES	
	CLEARZYM LT

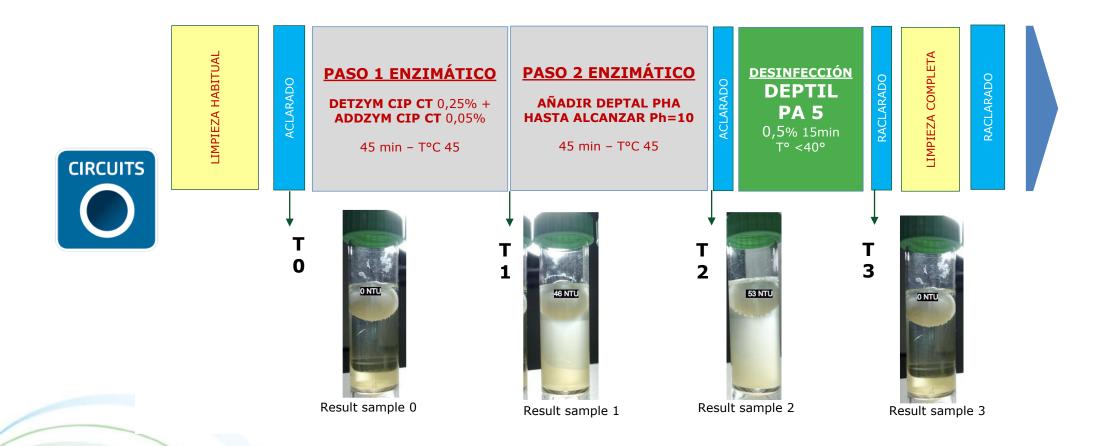
Eliminación del biofilm +

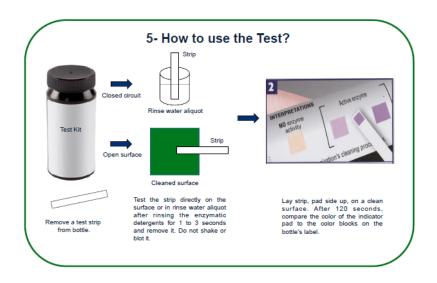
Eliminación del biofilm	Detergente enzimático
ADDZYM CIP CT + DETZYM CIP CT	
ADDZYM CIP PT DETZYM CIP PT	
	CLEARZYM CIP

SOLUCIONES ENZIMÁTICAS PARA EL BIOFILM

Tratamiento para 5 días consecutivos

- 1. Limpieza completa con detergentes alcalinos y ácidos de la gama KERSIA
- 2. Detergencia enzimática completa durante 5 días
- 3. Desinfeccion indispensable para eliminar los gérmenes que descubrimos debajo del biofilm


(DEPTIL APM : espuma desinfectante, mejor si es oxidante para eliminar posibles restos de enzimas)



SOLUCIONES ENZIMÁTICAS PARA EL BIOFILM

PROTOCOLO A SEGUIR: Tratamiento curativo o preventivo y toma de muestras

ENZYFREE: Detección de enzimas activadas

Resultado negativo: no hay encimas activas en la solución

RESUMEN

LISTERIA Y BIOFILM

- Listeria monocytogenes posee unas capacidades fantásticas de adaptación y puede crecer en varios tipos de alimentos: alimentos congelados, productos lácteos, comida lista para consumir, carne y pescado, etc.
- Listeria spp. puede formar biofilm, como otras bacterias para protegerse contra el estrés ambiental.
- Cuanto más antuguo sea un biofilm, más difícil resultará eliminarlo, y si es multiespecie, mas aún.

- Es esencial una limpieza y desinfección con productos adecuados para reducir la presión microbiológica.
- Implicar a todos departamentos en su control.
- Todos los desinfectantes registrados bactericidas y mejor si son especialmente eficaces para L. monocytogenes.

SOLUCIONES PREVENTIVAS KERSIA FRENTE LISTERIA

PASO IMPORTANTE: iDETERGENCIA!

DEPTAL MP: detergente

complejante

CLEAN BD-QF: desengrasante-

desinfectante complejante

DEPTAL WS: detergente alcalino

secuestrante

DEPTACID ONE: detergente

ácido anticalcáreo

DEPTAL MPM: detergente complejante espumante

DEPTAL MCL: detergente desinfectante espumante

DEPTAL AS: detergente desinfectante espumante para

superficies sensibles

DEPTACID SM: detergente ácido anticalcáreo espumante

HAY QUE TENER EN CUENTA:

- **O COMPOSICIÓN Y ORIGEN DE LA SUCIEDAD**
- AGUA (DUREZA, CALIDAD, CLORUROS)
- TIPO DE APLICACIÓN (CIP, PULVERIZACIÓN, ESPUMA, REMOJO, LIMPIEZA MANUAL...)

Amplio rango de detergentes

SOLUCIONES DESINFECTANTES KERSIA FRENTE LISTERIA

DESINFECTANTES EFICACES FRENTE LISTERIA M.

DEPTIL BC MAX (amina)

DEPTIL PA 5

(ácido peracético)

SOPURCLEAN NR

(ácidos grasos)

DEPTIL APM

(ácido peracético)

DEPTIL SWAQ

(amina)

DEPTIL HDS

(etanol)

SOPURCLEAN NR

(ácidos grasos)

ULTRAD

(ácido hidroxiacético)

Amplia gama de desinfectantes eficientes para la Listeria

AUNQUE CASI TODOS LOS DESINFECTANTES BACTERIANOS SON EFICIENTES PARA L. MONOCYTOGENES

GRACIAS POR SU ATENCIÓN

Óscar CIRUGEDA MONTESINOS

Jefe de Mercado Food y Empresas de servicios. Veterinario Food & Cleaning Contractor Market Manager

oscar.cirugeda@kersia-group.com M/+34 669 70 21 22 T/+34 948 32 45 32

Kersia Ibérica. Pol. Arazuri-Orcoyen, Calle C, nº32, 31160 Orcoyen (Navarra) www.kersia-group.com

